제품 매뉴얼 Smart I/O - I

업데이트 : 2021.10.14

Revision No.13 (2015.06.04 기준)

주의사항

본 사용설명서의 저작권은 HNS에 있습니다.

본 사용설명서의 내용 중 일부 또는 전부를 다른 목적으로 복제 또는 복사를 할 수 없습니다. 본 제품의 내용은 품질 향상을 위해서 사전 통보 없이 변경될 수 있습니다. 변경된 사용설명서는 저희 회사 홈페이지 www.hnsts.co.kr에서 확인 하시기 바랍니다.

본 제품을 사용하기 이전에 반드시 본 사용설명서를 충분히 읽어 본 뒤 사용하시기 바랍니다. 본 사용설명서를 충분히 읽어 보지 않은 상태에서 발생된 모든 피해는 당사에서 일체의 책임을 지지 않으므로 주의하십시오. 지정된 규격품 이외의 시스템을 사용하여 발생한 손상 및 본 사용설명서의 사용방법과 주의사항을 지키지 않아 시스템을 손상시켰을 때는 당사에서 책임지지 않으므로 주의하십시오.

- 1. 본 제품의 규격은 품질 개선을 위하여 임의로 사양이 변동될 수 있습니다.
- 2. 잘못된 배선은 제품이 파손되거나 오작동의 원인이 될 수 있습니다.
- 3. 외부 전원 또는 제품의 이상 발생시에 전체 제어 시스템을 보호하기 위해 IEC-Series의 외부에 보호 회로를 구성하 여 사용하시기 바랍니다.
- 오동작으로 인해 전체 시스템의 안전성 또는 인체에 심각한 문제를 초래할 수 있으며 잘못 취급 하였을 경우 사용자
 가 사망 또는 중상을 입는 위험상태가 발생할 수 있습니다.
- 5. 외부에 비상 정지 스위치, 보호 회로와 같은 시스템의 손상 및 오동 작으로부터 발생할 수 있는 피해로부터 보호할 수 있는 안전장치를 구성하여 장치를 설치하여 사용하시기 바랍니다. (잘못 취급하였을 경우 사용자가 상해를 입거나 또는 물적 손해가 발생하는 위험상태가 발생할 것으로 예상되는 경우 비상정지, 인터록 회로를 외부회로에서 구성해 주시기 바랍니다.)
- 인체사고나 중대한 손해로 확대될 것으로 예측되는 용도로 사용하실 경우에는 이중 안전장치 등 안전대책을 세워 주 시기 바랍니다.
- 7. 전선은 단자나사로 확실히 조여 주십시오. 접속이 불량일 경우 이상발열이나 고장의 원인이 됩니다.
- 8. 정격사양, 환경 등의 사양범위 이외에서는 사용하지 마십시오. 이상발열이나 고장의 원인이 됩니다.
- 9. 분해나 개조하지 마십시오. 감전이나 고장의 원인이 됩니다.

10. 전류가 흐르고 있는 동안에는 단자를 만지지 마십시오. 감전의 우려가 있습니다.

[쇼트/정전기 주의]

- 쇼트의 가능성이 존재하므로 작업 환경 주변에 전도 성이 높은 물체를 두지 않습니다.
- 작업환경이 건조한 경우 정전기가 발생할 수 있으므로 작업 전 절연 장갑을 착용합니다.
- 전기가 흐르는 전선의 피복이 벗겨져 있는 경우 절연체로 감아줍니다.

[전기 사용시 주의]

- AC(220V) 또는 DC(12V) 미 입력시 각 기능들이 정상 동작 안 함(ADC, DAC, RS232, Relay)
- Smart I/O전원연결은 DC 인 경우 12V(+,-극성주의), AC인 경우 220V를 사용하시기 바랍니다.
- DC 전원 사용시 극성이 맞게 되었는지 확인합니다. (+,-)

[점퍼, 결선]

- IEC-Series의 非 LITE/LITE 종류에 따른 Smart I/O의 점퍼 연결은 올바른지 확인합니다.
- IEC-Series와 Smart I/O 확장 케이블(Extension Port) 연결 시 포트와 케이블이 바뀌지 않도록 주의합니다.
- 각종 센서 사용시 전기를 인가하기 전에 최초 계획한대로 결선이 맞는지 확인합니다.

[Block 사용]

- Block 사용시 타사 제품과 함께 사용할 수 없습니다. (I/O보드와 호환되도록 설계됨)
- Block 사용시 전기적인 사양을 유의 하여 사용해야 합니다. (ex : ADC는 0~5V, 0~10V 입력)

목 차

목	차4
Part	- I . Smart I/O – I Base Board8
	1. Smart I/O - I 소개8
	2. 지원되는 제품
	3. 전원 입력 시 LED 상태10
	4. 점퍼 연결 주의사항11
	5.AC/DC 전원 연결하기12
	CASE-1)AC 전원 연결하기12
	CASE-2)DC 전원 연결하기13
	6. 입력/출력 특성14
	7. 각부 명칭15
	8. 외형치수15
	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)16
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)16 -II. Smart I/O - I 기능소개
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)16 -II. Smart I/O - I 기능소개
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)16 -II. Smart I/O - I 기능소개
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결) 16 -II. Smart I/O - I 기능소개
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)
Part	9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)

목차

5) Application 응용예세
5-1)C#예제 전체소스 코드
5-2)VB.NET 예제 전체소스 코드
5-3)C++ 예제 전체소스 코드3
2. A/D(Analog to Digital) 입력단자
1) A/D(Analog to Digital) 입력단자 소개
2) A/D(Analog to Digital) 입력단자 위치
3) A/D(Analog to Digital) 입력단자 응용방법
3-1) 거리센서 연결방법
3-2) 압력센서 연결방법
4) 언어별 주요소스 코드
5) Application 응용예제
5-1)C#예제 전체소스 코드
5-2)VB.NET 예제 전체소스 코드
5-3)C++ 예제 전체소스 코드
3. FET 울덕단사
3. FET 절덕단자 44 1) FET 출력단자 소개 44
3. FET 절덕단자
3. FET 철덕단자
3. FET 절덕단자 44 1) FET 출력단자 소개 44 2) FET 출력단자 위치 44 3) FET 출력단자 응용방법 44
3. FET 철력단자 44 1) FET 출력단자 소개 44 2) FET 출력단자 위치 44 3) FET 출력단자 응용방법 44 3-1) 할로겐램프 연결방법 44
3. FET 철력단자 44 1) FET 출력단자 소개 44 2) FET 출력단자 위치 44 3) FET 출력단자 응용방법 44 3-1) 할로겐램프 연결방법 44 3-2) 냉온소자 연결방법 44
3. FET 출력단자 44 1) FET 출력단자 소개 43 2) FET 출력단자 위치 44 3) FET 출력단자 응용방법 44 3) FET 출력단자 응용방법 44 3-1) 할로겐램프 연결방법 44 3-2) 냉온소자 연결방법 44 3-3) DC모터 연결방법 44
3. FET 출력단자 44 1) FET 출력단자 소개 43 2) FET 출력단자 위치 44 3) FET 출력단자 응용방법 44 3-1) 할로겐램프 연결방법 44 3-2) 냉온소자 연결방법 44 3-3) DC모터 연결방법 44
3. FET 울력단자 44 1) FET 출력단자 소개 42 2) FET 출력단자 위치 44 3) FET 출력단자 응용방법 44 3-1) 할로겐램프 연결방법 44 3-2) 냉온소자 연결방법 44 3-3) DC모터 연결방법 44 4) 언어별 주요소스 코드 44
3. FET 철덕단자 44 1) FET 출력단자 소개 44 2) FET 출력단자 위치 44 3) FET 출력단자 응용방법 44 3-1) 할로겐램프 연결방법 44 3-2) 냉온소자 연결방법 44 3-3) DC모터 연결방법 44 4) 언어별 주요소스 코드 44
3. FET 출력단자 44 1) FET 출력단자 소개 45 2) FET 출력단자 위치 44 3) FET 출력단자 응용방법 44 3) FET 출력단자 응용방법 44 3-1) 할로겐램프 연결방법 44 3-2) 냉온소자 연결방법 44 3-3) DC모터 연결방법 44 4) 언어별 주요소스 코드 44 5) Application 응용예제 54
3. FET 울력단자 4 1) FET 출력단자 소개 4 2) FET 출력단자 위치 4 3) FET 출력단자 응용방법 4 3-1) 할로겐램프 연결방법 4 3-2) 냉온소자 연결방법 4 3-3) DC모터 연결방법 4 4) 언어별 주요소스 코드 4 5) Application 응용예제 5 5-1) C#예제 전체소스 코드 5
3. FET 울력단자 4 1) FET 출력단자 소개 4 2) FET 출력단자 위치 4 3) FET 출력단자 응용방법 4 3-1) 할로겐램프 연결방법 4 3-2) 냉온소자 연결방법 4 3-2) 냉온소자 연결방법 4 4) 언어별 주요소스 코드 4 5) Application 응용예제 5 5-1) C#예제 전체소스 코드 5 5-2) VB.NET 예제 전체소스 코드 5

4. Relay 집심 물덕단사
1)Relay 접점 출력단자 소개
2) Relay 접점 출력단자 위치
3) Relay 접점 출력단자 응용방법
3-1) 할로겐램프 연결방법56
4) 언어별 주요소스 코드
5) Application 응용예제
5-1) C#예제 전체소스 코드
5-2)VB.NET 예제 전체소스 코드60
5-3) C++ 예제 전체소스 코드61
5. PWM(Pulse Width Modulation) 출력단자62
1) PWM(Pulse Width Modulation) 출력단자 소개62
2) PWM(Pulse Width Modulation) 출력단자 위치64
2) PWM(Pulse Width Modulation) 출력단자 위치64 3) PWM(Pulse Width Modulation) 출력단자 응용방법65
2) PWM(Pulse Width Modulation) 출력단자 위치
2) PWM(Pulse Width Modulation) 출력단자 위치
 2) PWM(Pulse Width Modulation) 출력단자 위치
 2) PWM(Pulse Width Modulation) 출력단자 위치
 2) PWM(Pulse Width Modulation) 출력단자 위치
 2) PWM(Pulse Width Modulation) 출력단자 위치
2) PWM(Pulse Width Modulation) 출력단자 위치

Part - I Smart I/O - I

www.hnsts.co.

Part- I . Smart I/O - I Base Board

1. Smart I/O - I 소개

Smart I/O 보드는 IEC-Series와 연동하여 적은 비용과 짧은 개발 기간으로 산업 환경에서 편리하게 적용 할 수 있는 솔 루션이며, 기존의 HMI(Human Machine Interface)와 PLC(Programmable Logic Controller)의 기능을 하나의 제품으로 구 성 할 수 있는 옵션 제품입니다.

1	PC 응용프로그램(C++, C#, Basic)은 가능한데 PLC의 래더 로직(Ladder Logic)을 모르시는 개발자 분들은 SmartX Framework를 통해 아주 쉽게 제어 가능합니다. (PLC를 모르시는 프로그래머에게 적합한 제품입니다.)
2	외부 기기(장치)들과 별도의 인터페이스회로 없이 바로 연결 하여 사용할 수 있습니다.
3	소형(간이) 자동화 시스템 구축을 간편하게 하실 수 있으며 비용 또한 절약 할 수 있습니다.
4	적은 비용으로 HMI와 PLC기능의 제품으로 구성 할 수 있습니다.

2. 지원되는 제품

IEC Series 전 제품 사용 가능

IEC266 - Series 지원 제품명			
인치	IEC266−Series(≢ Lite)	IEC266Lite-Series	
4.3 inch	-	IEC266Lite-43, IEC266Lite-43[B1],[B2]	
5.6 inch	-	IEC266Lite-56, IEC266Lite-56[B1],[B2]	
7 inch	IEC266-07, IEC266-07[B1],[B2]	IEC266Lite-07, IEC266Lite-07[B1],[B2]	
8 inch	IEC266-08, IEC266-08[B1],[B2]	-	
10.2 inch	IEC266-102, IEC266-102[B1],[B2]	-	

IEC667 - Series 지원 제품명			
인치	IEC667−Series(≢ Lite)	IEC667Lite-Series	
5.6 inch	_	IEC667Lite-56, IEC667Lite-56[B1],[B2]	
7 inch	IEC667-07, IEC667-07[B1],[B2]	IEC667Lite-07, IEC667Lite-07[B1],[B2]	
8 inch	IEC667-08, IEC667-08[B1],[B2]	IEC667Lite-08, IEC667Lite-08[B1],[B2]	
10.2 inch	IEC667-102, IEC667-102[B1],[B2]	IEC667Lite-102, IEC667Lite-102[B1],[B2]	
10.4 inch	IEC667-104, IEC667-104[B1],[B2]	IEC667Lite-104, IEC667Lite-104[B1],[B2]	

IEC1000 - Series 지원 제품명		
인치	IEC1000-Series(≢ Lite)	IEC1000Lite-Series
5.6 inch	-	IEC1000Lite-56, IEC1000Lite-56[B1],[B2]
7(6.95)inch	IEC1000-07N, IEC1000-07[B1],[B2]	IEC1000Lite -07, IEC1000Lite-07[B1],[B2]
8 inch	IEC1000-08, IEC1000-08[B1],[B2]	IEC1000Lite -08, IEC1000Lite-08[B1],[B2]
10.2 inch	IEC1000-102, IEC1000-102[B1],[B2]	IEC1000Lite-102, IEC1000Lite-102[B1],[B2]
10.4 inch	IEC1000-104, IEC1000-104[B1],[B2]	IEC1000Lite-104, IEC1000Lite-104[B1],[B2]
15 inch	IEC1000-150	-
XGA (모니터별도)	IEC1000XGA-I	_

3. 전원 입력 시 LED 상태

[주의] LED 장착위치는 품질개선을 위하여 임의로 위치사양이 변경될 수 있습니다.

LED 연결상태(ON)	IEC Series 미 연결	IEC Series 연결
내부 Extension-Port 전원	_	LED3(DC 3.3V)
AC/DC 전원	LED1(DC 12V), LED2(DC 5V)	LED1(DC 12V), LED2(DC 5V) LED3(DC 3.3V)

4. 점퍼 연결 주의사항

구입하신 IEC-Series 제품에 따라서 반드시 아래와 같이 점퍼를 설정하시고 연결 바랍니다.

연결하실 때 반드시 IEC-Series 전원을 OFF 하신 후 연결하여 사용하시기 바랍니다. (★ 전원 ON상태에서 연결 시 고장 의 원인이 됩니다.)

	IEC - Series 제품명	전원	점퍼
Smart I/O - I	IEC-Series	12V	점퍼 OFF(제거)
	IEC Lite-Series	5V	점퍼 ON(장착)

[주의] 잘못 된 연결 및 설정은 제품 오 동작 및 고장의 원인이 됩니다.

5. AC/DC 전원 연결하기

Smart I/O - I의 기능의 정상 동작을 위해 반드시 AC 또는 DC 외부입력전원이 필요합니다.

CASE-1) AC 전원 연결하기(기본 사양)

Smart I/O - I는 시스템 보호를 위하여 전원 절연(Isolation)을 목적으로 AC전원을 입력하도록 설계 되어 있습니다. AC 전원(220V) 60HZ 입력하기 위해서는 아래의 그림을 참고하여 전원을 입력하시기 바랍니다.

[주의]

[STEP-1] 아래의 두가지 방법으로 하나를 선택하여 전원을 연결

CASE-2) DC 전원 연결하기(별도 개조작업 필요)

Smart I/O - I는 시스템 보호를 위하여 전원 절연(Isolation)을 목적으로 AC전원을 입력하도록 설계 되어 있습니다. AC전 원을 인가 하기 어려운 환경에서 DC전원을 인가 하도록 변경하기 위한 설명입니다. DC전원을 사용하실 경우 입력 전압 은 반드시 아래의 표를 참고하여 입력하시기 바랍니다.

제품명	입력전압
Smart I/O - I, II	DC 12V, 300mA이상 사용 권장
Smart I/O - III	DC 12V, 800mA이상 사용 권장

[참고] 제품 구입시 DC전원으로 변경요청 하시면 DC전원으로 바로 사용할 수 있는 상태의 제품을 받	보으실 수 있습니다.
--	-------------

[STEP-1] SMPS(Power)을 제거

[STEP-2] SMPS을 제거한 부분에 사진과 같이 Shunt 저항을 장착할 수 있도록 되어 있으며, 이곳에 shunt(0Ω)저항 또는 점퍼선을 연결

[STEP-3] 전원연결은 AC와 달리 DC전원을 사용하실 경우 반드시 Board에 표시되어 있는 극성을 참고하여 연결

6. 입력/출력 특성

Smart I/O - I 내부에는 입력 8Ch, A/D 2Ch, 출력 8Ch, PWM 2Ch 로 다음과 같이 구성되어 있습니다.

① Smart I/O - I Base Board

Direction	Туре	Name Channel		Rating	Notice	
	DC입력(무극성)	INPUT0 ~ 7	8Ch	DC 12V ~ DC 24V	PORTB0~7	
INPUT	A/D 입력	A/D IN 2Ch		5V / 10V	IEC266 - 10bit IEC667/1000 - 12bit	
	FET 출력	TROUT1 ~ 4	4Ch	VSS = 55V, ID = 17A	N-Channel	
OUTPUT	RELAY 출력	RY_SW1 ~ 4	4Ch	5A 250VAC 5A 30VDC	-	
	PWM(FET)출력	PWM1 ~ 2	2Ch	VSS = 55V, ID = 17A	N-Channel	

 Smart I/O - I을 사용하기 위해서는 AC IN에 전원을 인가하여야 합니다. (AC Input → AC90V ~ AC240V 50/60Hz)

 AC 전원 대신 DC전원을 인가하여 사용할 수 있습니다. 당사로 문의 후 제품을 저희 회사로 보내주시기 바랍니다. (부품을 수정해야 합니다.)

 [**자료참고] 5. AC/DC 변환방법 및 주의사항**

 IEC667-Series에서 Port-B, Port-D, Port-F, Port-G는 입력으로 사용하는 것을 권장합니다. Port-B 0, 1, 2, 3, 4, 5 Pin은 전원 인가 후 9.3s 후 High로 출력되며, Port-D 0 ~ 7 Pin, Port-F 0 ~ 7 Pin, Port-G 7 Pin은 전원 인가 후 1.4s 후 High로 출력됩니다. 제시한 포트는 Pull Down 저항을 걸어서 사용하는 경우에는 문제가 되지 않으며, 자세한 사항은 [SmartX Framework 프로그래밍 가이드] → [SmartGPIO] → [Port 초기 상태 값]을 참고하시기 바랍니다.

② Smart I/O - I의 INPUT과 OUTPUT IEC-Series 연결포트 정보

INPUT	DC입력 Smart I/O	INPUT0	INPUT1	INPUT2	INPUT3	INPUT4	INPUT5	INPUT6	INPUT7
	PORT NAME	PORTB0	PORTB1	PORTB2	PORTB3	PORTB4	PORTB5	PORTB6	PORTB7
	ADC입력	A/D IN0	A/D IN1	-	-	-	-	-	-
	PORT NAME	AIN0	AIN1	I	-	Ι	I	-	-
OUTPUT	FET출력 Smart I/O	TROUT1	TROUT2	TROUT3	TROUT4	-	-	_	-
	PORT NAME	PORTA0	PORTA1	PORTA2	PORTA3	-	-	-	-
	RELAY 출력 Smart I/O	RY_SW1	RY_SW2	RY_SW3	RY_SW4	_	_	-	-
	PORT NAME	PORTA7	PORTA6	PORTA5	PORTA4	-	-	-	-
	PWM 출력	PWM1	PWM2	-	-	-	-	-	-
	PORT NAME	PWM1	PWM2	_	_	_	_	-	-

7. 각부 명칭

8. 외형치수

9. IEC-Series와 Smart I/O - I 제품 연결하기(케이블 연결)

[ス 01]	연결하실 때 반드시 IEC-Series 전원을 OFF 하신 후 연결하여 사용하시기 바랍니다. (전원 ON 상태에서 연결 시 고장의 원인이 됩니다.)
[74]	Extension Port-I/II IDC Cable Set의 경우 50cm 이하의 길이로 사용 권장합니다. 50cm 이상으로 길이를 연장하는 경우 제품의 정상적인 동작을 보장하지 못합니다.

[연결사용 안내]

[MEMO]

Part -II Smart I/O - I 기능소개

www.hnsts.co.kr

Part-II. Smart I/O - I 기능소개

1. INPUT 입력단자

1) INPUT 입력단자 소개

8 채널의 입력을 처리할 수 있으며 극성 없이 입력이 가능하며 High Logic은 DC12 ~ 24V를 사용할 수 있습니다.

2) INPUT 입력단자 위치

INPUT 입력단자 | Part - II. Smart I/O -I 기능소개

3) INPUT 입력단자 응용방법

3-1) 스위치 연결방법

아래그림을 참고하여 결선하시고, Smart I/O - INPUT의 INO/INPUTO - 스위치 항목에서 확인 가능

① 결선도

② Smart I/O - I Base Board 결선도 예

3-2) 2선식 센서 연결방법(-COM)

아래와 같이 결선을 하시고, Smart I/O_Input의 IN1/INPUT1 - 2선식 근접센서 항목에서 확인가능

① 결선도

② Smart I/O - I Base Board 결선도 예

[참조] 오토닉스(PRT18-8DO) 데이터 시트 참조

3-3) 2선식 센서 연결방법(+COM)

아래와 같이 결선을 하시고, Smart I/O_Input의 IN1/INPUT1 - 2선식 근접센서 항목에서 확인가능

① 결선도

② Smart I/O - I Base Board 결선도 예

[참조] 오토닉스(PRT18-8DO) 데이터 시트 참조

3-4) 3선식 센서 연결방법(PNP형)

아래와 같이 결선을 하시고, Smart I/O_INPUT의 IN2/INPUT2 - 3선식 PNP근접센서 항목에서 확인가능

① 결선도

② Smartl/O - I Base Board 결선도 예

[참조] 오토닉스(PRT18-8DP) 데이터 시트 참조

3-5) 3선식 센서 연결방법(NPN형)

아래와 같이 결선을 하시고, Smart I/O_INPUT의 IN3/INPUT3 - 3선식NPN근접센서 항목에서 확인가능

① 결선도

② Smartl/O - I Base Board 결선도 예

[참조] 오토닉스(PRT18-8DN) 데이터 시트 참조

4) 언어별 주요소스 코드

C#	
// PORTB의 상태변경이 감지되었을 때 발생되는 이벤트 private void smartGPIO1_EvtPortBDatasChange(object sender, EventArgs e) {	
Int IPortDatas; // 이벤트 인자로 받은 데이터를 포트의 상태를 얻기 위해 형변환한다. SmartX.PORTDataEvtArgs PortDatas; // EventArgs e 에는 포트의 데이터를 직접 접근할 수 없으므로 SmartX.PORTDataEvtArgs로 변환 // ePortDatas.iPortDatas 필드가 있는데 이 값을 읽으면 포트의 상태를 얻을 수 있다.	한다.
PortDatas = (SmartX.PORTDataEvtArgs)e; // iPortDatas = 포트0~8번까지의 값(0~255) iPortDatas = PortDatas.iPortDatas;	
// Port 입력 상태에 따른 처리 코드로 개발자가 직접 작성 SmartGPIO_Parsing(iPortDatas); }	

VB.NET

```
' PORTB의 상태변경이 감지되었을 때 발생되는 이벤트
Private Sub smartGPIO1_EvtPortBDatasChange(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
smartGPIO1.EvtPortBDatasChange
Dim iPortDatas As Integer
Dim PortDatas As SmartX.PORTDataEvtArgs
PortDatas = e
iPortDatas = PortDatas.iPortDatas
SmartGPIO_Parsing(iPortDatas)
End Sub
```

C++

```
void CSmartGPIOEVCDlg::OnTimer(UINT nIDEvent)
{
     // Timer 식별자가 3인경우. SetTimer(3, 2000, NULL);에서 식별자 지정
   if(nIDEvent == 3)
   {
      int iPortDatas;
      iPortDatas = pf_GetPortBDatas();
      //포트의 상태가 변경 될때만 처리
      if(m_iOldPortBData != iPortDatas)
      {
           m_iOldPortBData = iPortDatas;
           // Port 입력 상태에 따른 처리 코드로 개발자가 직접 작성
           PortB_Parsing(iPortDatas);
      }
   }
   CDialog::OnTimer(nIDEvent);
}
```

5) Application 응용예제

SmartX Framework	SmartGPIO
소스파일	Smart I/O_Input
소스경로	홈페이지 [자료실] → [Application Note] → [Smart I/O 활용]
기 능	스위치, 근접센서 등 입력기능
응용분야	스위치, 외부입력장치
준비사항	 스위치: 스위치 근접2선식(Nomal Open)센서: ㈜오토닉스(PRT18-8DO) 근접3선식(PNP) 센서: ㈜오토닉스(PR18-8DP) 근접3선식(NPN) 센서: ㈜오토닉스(PR18-8DN)

이미지/카운트 초기화 버튼
 이미지 표시창
 카운트 표시

[동작설명]

- ▶ 프로그램이 시작되면서 외부에서 각각의 포트 별로 입력신호(LOW → HIGH)가 발생하면 ②의 이미지가 변경되며 ③에 입력 카운트가 1 증가합니다.
- ▶ 만약 프로그램 실행 도중에 ③의 카운트를 0으로 초기화 하고 싶은 경우 ①의 Initial 버튼을 클릭하면 초기화 됩니다.

5-1) C#예제 전체소스 코드

본 예제의 회로도에서 INPUT0은 스위치, INPUT1은 2선식 근접센서, INPUT2는 3선식 PNP 근접센서, INPUT3는 3선식 NPN근접센서로 연결되어 있습니다. 여기서 설명하는 INPUT0은 스위치(SW)이며 스위치 이외의 근접센서(2선식, 3선식)에 관한 설명은 Application Notes의 Smart I/O_Input 예제소스를 참고 바랍니다.

```
      [STEP-1]
      Form1_Load할수에서 SmartGPIO 초기화

      // 폼 로드시 실행 됨
      private void Form1_Load(object sender, EventArgs e)

      {
      SmartGPIO_Parsing(255);
      // 초기 Data값 All High Setting

      smartGPIO1.PORTBDIRS = 0;
      // PORTB GPIO 방향설정 (ALL INPUT)

      smartGPIO1.PORTBDATAS = 0;
      // PORTB DATA 설정
      (ALL LOW)

      smartGPIO1.PortBWatchStart();
      // PORTB DATA변경 이벤트 스타트
      ...중략....
```

[STEP-2] Port B의 상태가 변경되면 smartGPIO1_EvtPortBDatas Change 이벤트가 호출

// PORTB의 상태변경이 감지되었을 때 발생되는 이벤트 private void smartGPIO1_EvtPortBDatasChange(object sender, EventArgs e) { int iPortDatas; // 이벤트 인자로 받은 데이터를 포트의 상태를 얻기 위해 형변환한다. SmartX.PORTDataEvtArgs PortDatas; // EventArgs e 에는 포트의 데이터를 직접 접근할 수 없으므로 // SmartX.PORTDataEvtArgs로 변환한다. // ePortDatas.iPortDatas 필드가 있는데 이 값을 읽으면 포트의 상태를 얻을 수 있다. PortDatas = (SmartX.PORTDataEvtArgs)e; // iPortDatas = 포트0~8번까지의 값(0~255) iPortDatas = PortDatas.iPortDatas; // PORTB의 이벤트 처리함수 SmartGPIO_Parsing(iPortDatas); }

[STEP-3] Port B의 이벤트 처리함수

```
// PORTB의 상태변경 이벤트 처리함수
private void SmartGPIO_Parsing(int iPortDatas)
{
   // Input0 체크. 스위치(SW)
   if ((iPortDatas \& 0x01) == 0x01)
                                                // PortB의 0번 비트가 1이면
   {
      LbICnt0.Text = InputCount[0].ToString();
                                                // 카운터를 표시만 해줌
      SD0.SetBackimage = IMG_SW_1;
                                                // OFF 이미지 표시
   }
                // PortB의 0번 비트가 0이면 < 버튼이나 센서가 작동>
   else
   {
      LblCnt0.Text = (InputCount[0] += 1).ToString();
                                                  // 카운터를 +1해서 표시해줌
      SD0.SetBackimage = IMG_SW_0;
                                                   // ON 이미지표시
   }
… 중략 …
```

INPUT 입력단자 | Part - II. Smart I/O -I 기능소개 _

5-2) VB.NET 예제 전체소스 코드

본 예제의 회로도에서 INPUTO은 스위치, INPUT1은 2선식 근접센서, INPUT2는 3선식 PNP 근접센서, INPUT3는 3선식 NPN근접센서로 연결되어 있습니다. 여기서 설명하는 INPUT0은 스위치(SW)이며 스위치 이외의 근접센서(2선식, 3선식)에 관한 설명은 Application Notes의 Smart I/O_Input 예제소스를 참고 바랍니다.

'ON 이미지표시

End If … 중략 …

SD0.SetBackimage = IMG_SW_0

5-3) C++ 예제 전체소스 코드

CPP 예제 소스 코드는 별도로 제공하지 않습니다. SmartX Framework 관련 예제를 참고하시기 바랍니다.

자료위치 안내 : 자사홈페이지(www.hnsts.co.kr) → 자료실 → SmartX 관련자료 → SmartX Framework 예제파일 → SmartX_Example_C++ → SmartGPIOEVC

[표1] Port 핀과 모드, iPortDatas 값 설명 (0번 비트가 1인 경우)

Port 핀	7	6	5	4	3	2	1	0
모드	0	0	0	0	0	0	0	1
iPortDatas 값	0x01(16진수)							

[참고] GPIO관련 자세한 설명은 SmartX Programming Guide의 SmartGPIO편을 참고 바랍니다.

2. A/D(Analog to Digital) 입력단자

1) A/D(Analog to Digital) 입력단자 소개

A/D INPUT은 Analog Optocoupler를 사용한 것이 특징입니다. 따라서 입력 측(A/D INPUT)과 IEC-Series의 AINO/AIN1간 전원분리(Isolation)가 되어 있습니다. A/D 입력전압은 DC 0 ~ 5V 또는 DC 0 ~ 10V를 사용하며 IEC266은 10bit(1024), IEC667은 12bit(4096), IEC1000은 12bit(4096)의 해상도를 가지고 있습니다. A/D IN은 IEC-Series의 AINO/AIN1에 다음과 같이 연결 되어 있습니다.

외부입력단자	A/D IN0	A/D IN1
내부 Extension Port 연결단자	AIN 0	AIN 1

[A/D IN 커넥터]

[입력 선택 스위치 (10V ⇔ 5V)]

 포토커플러 입력은 무극성이며 COM.1 내부는 공통으로 묶여 있습니다.

 [주의]
 외부입력전원(멀티 탭) 사용시 접지가 있는 것을 사용해야 합니다. 접지가 없는 경우 ADC의 입력 값이 많이 흔들 릴 수 있습니다. Extension 2 케이블의 길이가 길어지는 경우 노이즈의 영향으로 신호가 왜곡될 수 있습니다

I

2) A/D(Analog to Digital) 입력단자 위치

3) A/D(Analog to Digital) 입력단자 응용방법

3-1) 거리센서 연결방법

아래와 같이 결선을 하시고, Smart I/O_ADC의 ADC0항목에서 확인가능

① 결선도

② Smartl/O - I Base Board 결선도 예

3-2) 압력센서 연결방법

아래와 같이 결선을 하시고, Smart I/O_ADC의 ADC1항목에서 확인가능

① 결선도

② Smartl/O - I Base Board 결선도 예

4) 언어별 주요소스 코드

C# // Adc 값 읽어서 표시하는 Timer private void smartTimer1_Tick(object sender, EventArgs e) { int iVal = 0, iVal1 = 0, iVal2 = 0, iVal3 = 0; double iADCVal = 0, iADCVal1 = 0, iADCVal2 = 0, iADCVal3 = 0; if (ChkADC0 == true) { iVal = smartADC1.ReadData(0); // ADC0 데이터를 얻어온다. Adc0_DataParsing(iVal); // 거리측정계산 처리코드로 개발자가 직접 작성 } ...중략.... }

VB.NET

```
' Adc 값 읽어서 표시하는 Timer
Private Sub smartTimer1_Tick(ByVal sender As Object, ByVal e As EventArgs)
Dim iVal As Integer = 0, iVal1 As Integer = 0, iVal2 As Integer = 0, iVal3 As Integer = 0
Dim iADCVal As Double = 0, iADCVal1 As Double = 0, iADCVal2 As Double = 0, iADCVal3 As Double = 0
If ChkADC0 = True Then
iVal = smartADC1.ReadData(0) ' ADC0 데이터를 얻어온다.
Adc0_DataParsing(iVal) ' 거리측정계산 처리코드로 개발자가 직접 작성
End If
...중략...
End Sub
```

```
void CSmartADCEVCDIg::OnTimer(UINT nIDEvent)
{ // Timer 식별자가 3인경우. SetTimer(3, 2000, NULL);에서 식별자 지정
if(nIDEvent == 3)
{
    // 선택된채널의ADC 값을 얻는다
    m_iNowADC = m_SmartADC.GetADCData(iSelCh);
    Adc0_DataParsing(m_iNowADC) //거리측정계산 처리코드로 개발자가 직접 작성
    CDialog::OnTimer(nIDEvent);
    }
}
```
5) Application 응용예제

SmartX Framework	SmartADC
소스파일	Smart I/O_ADC
소스경로	홈페이지 자료실 -> Application Note -> Smart I/O 활용
기 능	온습도, 근접, 압축, 가속도, 자이로센서등 Analog센서값 처리
응용분야	센서사용 측정분야
준비사항	• 거리센서 : SHARP(GP2Y0A41SK0F) • 압력센서 : Smate(33A-030G-2210)

[동작설명]

- ▶ 프로그램이 시작되면서 ②의 FILTER ON버튼을 클릭하면 Filtering속성을 Enable로 활성화하고 일정 범위 이외의 데이터 값을 무시한 데이터의 평균을 구합니다.
- ▶ ⑤의 Start 버튼을 클릭하면 SmartTimer를 Start합니다. SmartTimer_Tick 이벤트 에서는 ADCO채널~ADC3채널까지를 읽는 코드가 Tick이벤트 실행할 때마다 호출됩니다.
- ▶ ④ 의 OFF 버튼을 클릭하면 해당 ADC채널의 smartADC1.ReadData(채널넘버); 코드가 활성화(Active) 됩니다. OFF 버튼은 해당 채널 별로 존재하며 각 버튼의 OFF/ON은 해당채널만 활성화 / 비활성화 시킵니다. 즉 ADC0과 ADC1을 ON하는 경우 ADC0과 ADC1채널에서 값을 읽어옵니다. ADC2와 ADC3은 OFF 되어 값을 읽지 않습니다.
- ▶ ⑤ 클릭 → ④ 클릭하여 ON 후 해당 채널에서 아날로그 데이터가 입력되는 경우 ③의 디지털(Digital) 값으로 표시됩니다. 해당 디지털 값은 SmartDraw1.PutData()를 사용하여 ①에 차트로 그려줍니다.

A/D(Analog to Digital) 입력단자 Part - II. Smart I/O -I 기능소개

5-1) C#예제 전체소스 코드

본 예제의 회로도에서 ADC 0은 거리센서, ADC 1은 압력센서로 연결되어 있습니다. 여기서 설명하는 ADC 0은 거리센서이며 거리센서 이외의 압력센서에 관한 설명은 Application Notes의 Smart ADC 예제 소스를 참고 바랍니다.

[STEP-2] ADC 값 읽어서 표시하는 Timer

```
private void smartTimer1_Tick(object sender, EventArgs e)
{
   int iVal = 0, iVal1 = 0, iVal2 = 0, iVal3 = 0;
   double iADCVal = 0, iADCVal1 = 0, iADCVal2 = 0, iADCVal3 = 0;
   if (ChkADC0 == true)
   {
      iVal = smartADC1.ReadData(0);
                                         // ADC0 데이터를 얻어온다.
                                           // 거리측정계산 함수
      Adc0_DataParsing(iVal);
   }
   if (ChkADC1 == true)
   {
      iVal1 = smartADC1.ReadData(1); // ADC1 데이터를 얻어온다.
   }
   if (ChkADC2 == true)
   {
                                    // ADC2 데이터를 얻어온다.
      iVal2 = smartADC1.ReadData(2);
   }
   if (ChkADC3 == true)
   {
                                          // ADC3 데이터를 얻어온다.
      iVal3 = smartADC1.ReadData(3);
   }
   // 그래프에 4채널의 데이터를 표시 하기위한 계산
   // IEC266은 10bit(1024)
   if (ChkIEC == 1)
   {
      iADCVal = ((double)iVal / 1024);
      iADCVal1 = ((double)iVal1 / 1024);
      iADCVal2 = ((double)iVal2 / 1024);
      iADCVal3 = ((double)iVal3 / 1024);
   }
```

[STEP-3] ADC0 센서값을 거리로 계산해주는 메서드(센서의 구간이 선형적일 때 적용)

// 거리센서의 종류마다 특성이 다르므로 계산공식을 센서에 맞게 적용하시기 바랍니다. // 센서 특성상 선형적이지 않을경우 구간별로 측정해야 합니다. // ADCO 센서값을 거리로 계산해주는 공식. 20cm ~ 50cm 구간 사이 변환 공식 // 본 코드는 AD값으로 거리를 계산하는 공식이며 AD값에 따라 거리값의 증/감이 비교적 비례하는 구간을 계산한 공식입니다. // AD값의 구간별로 정확하게 거리를 계산하기위해서는 AD구간별로 계산공식이 필요합니다. private void Adc0_DataParsing(int val) { // 거리센서의 ADC값 = 1064는 거리20cm, ADC값 = 491은 거리50cm 입니다. // ADC값 1064 - 491 = 573(ADC구간) 이고 20cm ~ 50cm(ADC의 거리구간) // 계산공식은 573 : 30 = (1064 - val) : x 의 결과값에 20(출발점)을 더합니다. LblAdc0_1.Text = ((((1064 - val) * 30) / 573) + 20).ToString() + "cm"; // 거리값 LblAdc0.Text = val.ToString(); // ADC값. int형으로 형변환 }

A/D(Analog to Digital) 입력단자 Part - II. Smart I/O -I 기능소개 .

5-2) VB.NET 예제 전체소스 코드

본 예제의 회로도에서 ADC 0은 거리센서, ADC 1은 압력센서로 연결되어 있습니다.

여기서 설명하는 ADC 0은 거리센서이며 거리센서 이외의 압력센서에 관한 설명은 Application Notes의 Smart ADC 예제 소스를 참고 바랍니다.

```
[STEP-1] 모든 채널(4ch) ADC Read Start / Stop 설정
```

'All ADC Read/Stop 설정

```
Private Sub BtnAdcStart_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles BtnAdcStart.Click

' ADC Start

If BtnAdcStart.ButtonStatus = SmartX.SmartButton.BUTSTATUS.DOWN Then

SmartTimer1.Start()

' ADC Stop

Elself BtnAdcStart.ButtonStatus = SmartX.SmartButton.BUTSTATUS.UP Then

SmartTimer1.Stop()

End If

End Sub
```

[STEP-2] ADC 값 읽어서 표시하는 Timer

```
'ADC 값 읽어서 표시하는 Timer
```

Private Sub SmartTimer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)

Dim iVal As Integer = 0, iVal1 As Integer = 0, iVal2 As Integer = 0, iVal3 As Integer = 0 Dim iADCVal As Double = 0, iADCVal1 As Double = 0, iADCVal2 As Double = 0, iADCVal3 As Double = 0

If ChkADC0 = Irue Then	
iVal = SmartADC1.ReadData(0)	'ADC0 데이터를 얻어온다.
Adc0_DataParsing(iVal)	'거리측정계산 함수
End If	
If ChkADC1 = True Then	
iVal1 = SmartADC1.ReadData(1)	'ADC1 데이터를 얻어온다.
End If	
If ChkADC2 = True Then	
iVal2 = SmartADC1.ReadData(2)	'ADC2 데이터를 얻어온다.
End If	
If ChkADC3 = True Then	
iVal3 = SmartADC1.ReadData(3)	'ADC3 데이터를 얻어온다.
End If	
'ADC 값 표시	
LbIAdc0.Text = iVal.ToString()	
LbIAdc1.Text = iVal1.ToString()	
LbIAdc2.Text = iVal2.ToString()	
LbIAdc3.Text = iVal3.ToString()	
' 그래프에 4채널의 데이터를 표시 하기위한	계산
' IEC266은 10bit(1024)	
If ChkIEC = 1 Then	
iADCVal = (CDbl(iVal) / 1024)	
iADCVal1 = (CDbl(iVal1) / 1024)	
iADCVal2 = (CDbl(iVal2) / 1024)	
iADCVal3 = (CDbl(iVal3) / 1024)	
'IEC667, IEC1000은 12bit(4096)	
Elself ChkIEC = 2 Then	

※ ADC0번 거리센서

센서 특성상 선형적이지 않을 경우 구간별로 측정해야 합니다. 본 예제 소스에서 사용한 거리센서는 일부 구간만이 선형 적인 관계로 해당 부분을 계산공식으로 표현하였으며 거리센서의 전체구간을 표현하려면 데이터시트를 참고하여 구간별로 측정하여야 합니다.

※ ADC1번 압력센서

센서를 불거나 흡입하면 센서 값이 바뀝니다.

A/D(Analog to Digital) 입력단자 Part - II, Smart I/O -I 기능소개 _

5-3) C++ 예제 전체소스 코드

CPP 예제 소스 코드는 별도로 제공하지 않습니다. SmartX Framework 관련 예제를 참고하시기 바랍니다.

자료위치 안내 : 자사홈페이지(www.hnsts.co.kr) → 자료실 → SmartX 관련자료 → SmartX Framework 예제파일 → SmartX_Example_C++ → SmartADCEVC

[참고] ADC관련 자세한 설명은 SmartX Programming Guide의 SmartADC편을 참고 바랍니다.

3. FET 출력단자

[주의]

1) FET 출력단자 소개

N-Channel FET를 사용하였으며, 회로와 같이 드레인에 연결이 되어있습니다. 구동하고자하는 부하에 따라 별도의 전원이 필요합니다.

외부입력단자	TROUT 1	TROUT 2	TROUT	3 TROUT 4	
내부 Extension Port 연결단자	PORTA 0	PORTA 1	PORTA	2 PORTA 3	
Direction	출력상태(출력)	Po Tr	tData 값 ue/False	LED Status	
초려	ON		True	ON	
	OFF		False	OFF	

[발열에 따른 주의사항]

전력량에 따라 FET 소자에 발열이 발생할 수 있으며, 발열량을 검토하여 전력량을 줄여 발열이 적게 발생하도록 하여 사용하시기 바랍니다.

[주의] IRFR024N은 VDSS = 55V, ID= 17A 정격의 FET입니다.

I

2) FET 출력단자 위치

3) FET 출력단자 응용방법

3-1) 할로겐램프 연결방법

아래와 같이 결선을 하시고, Smart I/O_Output의 FET제어(OUT0/TROUT1-DC할로겐) 항목에서 ON/OFF 테스트 가능

① 결선도

3-2) 냉온소자 연결방법

아래와 같이 결선을 하시고, Smart I/O_Output의 FET제어(OUT1/TROUT2-냉온소자) 항목에서 ON/OFF 테스트 가능 ① 결선도

3-3) DC모터 연결방법

아래와 같이 결선을 하시고, Smart I/O_Output의 FET제어(OUT2/TROUT3-DC모터) 항목에서 ON/OFF 테스트가능

① 결선도

4) 언어별 주요소스 코드

```
C#
// FET(TROUT1) DC할로겐램프 ON/OFF 제어
private void BtnDcLampCtrl_Click(object sender, EventArgs e)
{
   // DC 할로겐램프 ON
   if (BtnDcLampCtrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.DOWN)
   {
      smartGPIO1.PORTADATA0 = true;
      SDDcLamp.SetBackimage = DcLamp_1;
   }
   // DC 할로겐램프 OFF
   else if (BtnDcLampCtrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.UP)
   {
      smartGPIO1.PORTADATA0 = false;
      SDDcLamp.SetBackimage = DcLamp_0;
   }
}
```

VB.NET

Private Sub BtnDcLampCtrl_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles BtnDcLampCtrl.Click 'DC 할로겐램프ON

```
If BtnDcLampCtrl.ButtonStatus = SmartX.SmartButton.BUTSTATUS.DOWN Then
smartGPI01.PORTADATA0 = True
SDDcLamp.SetBackimage = DcLamp_1
' DC 할로겐램프OFF
Elself BtnDcLampCtrl.ButtonStatus = SmartX.SmartButton.BUTSTATUS.UP Then
smartGPI01.PORTADATA0 = False
SDDcLamp.SetBackimage = DcLamp_0
End If
End Sub
```

C++

```
// PORT CONTROL STATUS 의 PORTO 버튼을 클릭 시
void CSmartGPIOEVCDIg::OnBnClickedButport0()
{
    Int iOutData:
    if (nID==IDC_BUTTON0) // PORTO 버튼이 눌러지면
    {
        iOutData = 1; // DC 할로겐램프ON
    }else {
        iOutData = 0; // DC 할로겐램프OFF
    }
    m_SmartGPIO.SetPortABit(0, iOutData);
}
```

5) Application 응용예제

SmartX Framework	SmartGPIO				
소스파일	Smart I/O_Output				
소스경로	홈페이지 [자료실] → [Application Note] → [Smart I/O 활용]				
기 능	AC/DC전원으로 구동하는 장비 연동 시 온/오프조작				
응용분야	DC할로겐 램프, 냉온소자, DC 모터 등 제어				
준비사항	• 냉온소자 :(FALC1-00705T150) • 할로겐램프 :(AC/DC 12V,10W) ※할로겐램프는 AC/DC상관없이 전압만 맞춰주면 됨. • DC모터 : ㈜금일모터(KDG37-3429A-050)				

|--|

[동작설명]

▶ 프로그램이 시작되면서 ② 각 포트의 ON 버튼을 클릭하면 해당 포트 별로 출력(LOW→HIGH)가 발생하면서 ①의 이미지가 변경 (이미지 변경 그림 추가)됩니다. 4번째 RY_SW4/RY1 할로겐램프(AC)의 경우에는 Relay 기능을 테스트 가능합니다.

5-1) C#예제 전체소스 코드

본 예제의 회로도에서 Output 0은 할로겐램프, Output 1은 냉온소자, Output 2은 DC모터로 연결되어 있습니다. 여기서 설명하는 Output 0은 할로겐램프이며 할로겐램프 이외의 냉온소자, DC모터에 관한 설명은 Application Notes의 Smart I/O_Output 예제소스를 참고 바랍니다.

```
[STEP-1]
           Form1_Load함수에서 SmartGPIO 초기화
  // 폼 로드시 실행됨
  private void Form1_Load(object sender, EventArgs e)
  {
     smartGPI01.PORTADIRS = 255;
                                       // PORTA GPIO 방향설정 (ALL OUTPUT)
     smartGPIO1.PORTADATAS = 0;
                                       // PORTA DATA 설정 (ALL LOW)
     …중략…
  }
[STEP-2]
           BtnDcLampCtrl 클릭되면 smartGPIO1.PORTADATA0의 상태 값(true/false)을 변경
  // FET(TROUT1) DC할로겐램프 ON/OFF 제어
  private void BtnDcLampCtrl_Click(object sender, EventArgs e)
  {
     // DC 할로겐램프 ON
     if (BtnDcLampCtrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.DOWN)
      {
         smartGPIO1.PORTADATA0 = true;
         SDDcLamp.SetBackimage = DcLamp_1;
      }
     // DC 할로겐램프 OFF
     else if (BtnDcLampCtrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.UP)
     {
         smartGPIO1.PORTADATA0 = false;
```

SDDcLamp.SetBackimage = DcLamp_0;

}

}

FET 출력단자 | Part - II. Smart I/O -| 기능소개 _

5-2) VB.NET 예제 전체소스 코드

본 예제의 회로도에서 Output 0은 할로겐램프, Output 1은 냉온소자, Output 2은 DC모터로 연결되어 있습니다. 여기서 설명하는 Output 0은 할로겐램프이며 할로겐램프 이외의 냉온소자, DC모터에 관한 설명은 Application Notes의 Smart I/O_Output 예제소스를 참고 바랍니다.

5-3) C++ 예제 전체소스 코드

CPP 예제 소스 코드는 별도로 제공하지 않습니다. SmartX Framework 관련 예제를 참고하시기 바랍니다.

자료위치 안내 : 자사홈페이지(www.hnsts.co.kr) → 자료실 → SmartX 관련자료 → SmartX Framework 예제파일 → SmartX_Example_C++ → SmartGPIOEVC

[표1] Port 핀과 모드, iPortDatas 값 설명 (0번 비트가 1인 경우)

Port 핀	7	6	5	4	3	2	1	0
모드	0	0	0	0	0	0	0	1
iPortDatas 값		 0x01(16진수)						

[참고]

GPIO관련 자세한 설명은 SmartX Programming Guide의 SmartGPIO편을 참고 바랍니다.

4. Relay 접점 출력단자

1) Relay 접점 출력단자 소개

RELAY 접점 OUTPUT는 RELAY 접점을 이용하여 간단한 접점제어를 할 수 있습니다. (5A 250VAC/5A 30VDC)

외부입력단자	RY_접점4 F		RY_ 접점3 RY_ 접점2		명2 RY_ 접점1	
내부 Extension Port 연결단자	PORTA4 PORTA		PORTA5	PORTA	.6 PORTA7	
Direction	출력상태(출력)		PortData 값 True/False			LED Status
초려	ON		True			ON
	OFF		False			OFF

2) Relay 접점 출력단자 위치

3) Relay 접점 출력단자 응용방법

3-1) 할로겐램프 연결방법

아래와 같이 결선을 하시고, Smart I/O_Output의 Relay 접점제어(RY_접점4/RY1-AC할로겐) 항목에서 ON/OFF 테스트 가능

① 결선도

4) 언어별 주요소스 코드

C#
// Relay S/W AC할로겐램프 ON/OFF 제어 private void BtnAcLampCtrl_Click(object sender, EventArgs e)
1 // AC 할로겐램프 ON
if (BtnAcLampCtrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.DOWN)
smartGPI01.PORTADATA4 = true;
SDAcLamp.SetBackimage = AcLamp_1;
// AC할로겐램프 OFF
else if (BtnAcLampCtrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.UP)
{
smartGPI01.PORTADATA4 = false;
SDAcLamp.SetBackimage = AcLamp_0;
}
}

VB.NET

C++

```
// PORT CONTROL STATUS의 PORT4 버튼을 클릭 시
void CSmartGPIOEVCDIg::OnBnClickedButport4()
{
    Int iOutData;
    if (nID==IDC_BUTTON4) // PORT4 버튼이 눌러지면
    {
        iOutData = 1; // AC 할로겐램프ON
    }else {
        iOutData = 0; // AC 할로겐램프OFF
    }
    m_SmartGPIO.SetPortABit(4, iOutData);
}
```

5) Application 응용예제

SmartX Framework	SmartGPIO
소스파일	Smart I/O_Output
소스경로	홈페이지 자료실 -> Application Note -> Smart I/O 활용
기 능	AC/DC전원으로 구동하는 장비연동시 온/오프조작
응용분야	AC/DC 스위치기능
준비사항	• 할로겐램프 : (AC 220V, 50W)

 이미지 표시 창 FE 	ET ON/OFF
--	-----------

[동작설명]

▶ 프로그램이 시작되면서 ② 각 포트의 ON 버튼을 클릭하면 해당 포트 별로 출력(LOW→HIGH)가 발생하면서 ①의 이미지가 변경 (이미지 변경 그림 추가)됩니다. 4번째 RY_SW4/RY1 할로겐램프(AC)의 경우에는 Relay 기능을 테스트 가능합니다.

5-1) C#예제 전체소스 코드

본 예제의 회로도에서 Output 0은 할로겐램프, Output 1은 냉온소자, Output 2는 DC모터로 연결되어 있습니다. 여기서 설명하는 Output 0은 할로겐램프이며 할로겐램프 이외의 냉온소자, DC모터에 관한 설명은 Application Notes의 Smart I/O_Output 예제소스를 참고 바랍니다.

```
[STEP-1]
           Form1_Load함수에서 SmartGPIO 초기화
  // 폼 로드시 실행 됨
  private void Form1_Load(object sender, EventArgs e)
  {
      smartGPIO1.PORTADIRS = 255;
                                        // PORTA GPIO 방향설정 (ALL OUTPUT)
      smartGPI01.PORTADATAS = 0;
                                       // PORTA DATA 설정 (ALL LOW)
      …중략…
  }
[STEP-2]
          BtnAcLampCtrl 클릭되면 smartGPIO1.PORTADATA4의 상태 값(true/false)을 변경
  // Relay S/W AC할로겐램프 ON/OFF 제어
  private void BtnAcLampCtrl_Click(object sender, EventArgs e)
  {
     // AC 할로겐램프 ON
     if (BtnAcLampCtrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.DOWN)
      {
         smartGPIO1.PORTADATA4 = true;
         SDAcLamp.SetBackimage = AcLamp_1;
      }
     // AC할로겐램프 OFF
     else if (BtnAcLampCtrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.UP)
      {
        smartGPIO1.PORTADATA4 = false;
        SDAcLamp.SetBackimage = AcLamp_0;
      }
  }
```

Relay 접점 출력단자 Part - II. Smart I/O -I 기능소개 .

5-2) VB.NET 예제 전체소스 코드

본 예제의 회로도에서 Output 0은 할로겐램프, Output 1은 냉온소자, Output 2는 DC모터로 연결되어 있습니다. 여기서 설명하는 Output 0은 할로겐램프이며 할로겐램프 이외의 냉온소자, DC모터에 관한 설명은 Application Notes의 Smart I/O_Output 예제소스를 참고 바랍니다.

5-3) C++ 예제 전체소스 코드

CPP 예제 소스 코드는 별도로 제공하지 않습니다. SmartX Framework 관련 예제를 참고하시기 바랍니다.

자료위치 안내 : 자사홈페이지(www.hnsts.co.kr) → 자료실 → SmartX 관련자료 → SmartX Framework 예제파일 → SmartX_Example_C++ → SmartGPIOEVC

[표1] Port 핀과 모드, iPortDatas 값 설명 (0번 비트가 1인 경우)

Port 핀	7	6	5	4	3	2	1	0
모드	0	0	0	0	0	0	0	1
iPortDatas 값		0x01(16진수)						

[참고]

GPIO관련 자세한 설명은 SmartX Programming Guide의 SmartGPIO편을 참고 바랍니다.

5. PWM(Pulse Width Modulation) 출력단자

1) PWM(Pulse Width Modulation) 출력단자 소개

PWM OUTPUT은 FET OUTPUT과 같이 N-Channel FET를 사용하였습니다. 구동하고자 하는 부하에 따라 별도의 전원이 필요합니다. (최대 DC 55V)이므로 부하에 따라 폭넓게 사용할 수 있습니다.

[ㅈ이]	IRFR024N은 VDSS = 55V,ID= 17A 정격의 FET입니다.
(구의)	Smart I/O - I, II, III 에서는 PWM파형이 반전되어서 출력됩니다.

2) PWM(Pulse Width Modulation) 출력단자 위치

3) PWM(Pulse Width Modulation) 출력단자 응용방법

3-1) DC모터 연결방법

아래와 같이 결선을 하시고, Smart I/O_PWM의 DC모터/냉온소자(PWM1)항목에서 Duty Rate를 조절하여 속도테스트 가능 하며, PWM의 DutyRate를 이용한 전압조절로 DC모터의 속도를 조절할 수 있다.

① 결선도

② Smart I/O - I Base Board 결선도 예

3-2) 냉온소자 연결방법

아래와 같이 결선을 하시고, Smart I/O_PWM의 DC모터/냉온소자(PWM1)항목에서 DutyRate를 조절하여 온도조절테스트 가능하며, PWM의 DutyRate를 이용한 전압조절로 냉온소자의 온도를 조절할 수 있다.

① 결선도

3-3) 서보모터 연결방법

아래와 같이 결선을 하시고, Smart I/O_PWM의 Servo모터(PWM2)항목에서 Servo모터의 각도조절 테스트 가능 ① 결선도

SMPS SMC(+) GND(-) SMPS GND

- ※ Smart I/O_PWM 소스상에 Pwm2 부분이 PreScale = 240, PwmCounter = 1381, ClockDivider = 1/4, DutyRate = 96.3 으로 설정되어 있습니다.
- ※ ServoMotor는 한주기를 20ms(20.00277ms)로 만들고, 0°(0.7 ms = Duty 96.3), 90°(1.5 ms = Duty 92.3), 180°(2.3 ms = Duty 92.3) 각도 설정버튼(0도, 90도, 180도) 이나 듀티설정으로 각도를 제어할 수 있습니다.

아래는 서보모터 각도별 오실로스코프 화면입니다.

※ 0° (0.7 ms(728.12us) = Duty 96.3)

※ 90° (1.5 ms (1.52351ms) = Duty 92.3)

※ 180° (2.3 ms(2.30535ms)= Duty 92.3)

Smart I/O - I, II, III 에서는 PWM파형이 반전되어서 출력됩니다.

4) 언어별 주요소스 코드

```
C#
// PWM1의 DutyRate를 +1 씩 증가
private void BtnPwm1DutyUp_Click(object sender, EventArgs e)
{
   // 100이상 증가 안 됨
   if (PWM1DutyRate < 100)
   {
      // m_dPWM1DutyRate 값 1씩 증가
      PWM1DutyRate++;
      //레이블에 현재 듀티비 값 표시
      LbIPwm1Duty.Text = PWM1DutyRate.ToString();
   }
   // PWM1의 듀티비 적용
   smartPWM1.DutyRate1 = PWM1DutyRate;
   Pwm1DutyCheck(); // DutyRate1에 따른 처리 코드로 개발자가 직접 작성
}
```

VB.NET

```
'PWM1의DutyRate를+1 씩증가
Private Sub BtnPwm1DutyUp_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
BtnPwm1DutyUp.Click
'100이상증가안됨
   If PWM1DutyRate < 100 Then
      'm_dPWM1DutyRate 값1씩 증가
      PWM1DutyRate += 1
      '레이블에 현재 듀티비 값 표시
      LbIPwm1Duty.Text = PWM1DutyRate.ToString()
   End If
   'PWM1의 듀티비 적용
   smartPWM1.DutyRate1 = PWM1DutyRate
   Pwm1DutyCheck() 'DutyRate1에 따른 처리 코드로 개발자가 직접 작성
End Sub
```

C++

```
// PWM1 Duty값 1%씩 증가
void CSmartPWMEVCDlg::OnDutyInc1()
{
   CString strTemp;
   m_Duty1 = (m_Duty1 < 100) ? ++m_Duty1 : m_Duty1;
   // PWM1의 듀티비 적용
   m_SmartPWM.SetPWMDutyRate1(m_Duty1);
   //레이블에 현재 듀티비 값 표시
   strTemp.Format(L"%d", m_Duty1);
```

}

5) Application 응용예제

SmartX Framework	SmartPWM
소스파일	Smart I/O_PWM
소스경로	홈페이지 자료실 -> Application Note -> Smart I/O 활용
기 능	DC모터 속도제어, 냉온소자 온도제어, Servo모터 각도제어
응용분야	DutyRate를 이용한 전압제어로 속도 및 강약조절
준비사항	 DC모터 : ㈜ 금일모터(KDG37-3429A-050) 냉온소자 : FALC1-00705T150 Servo모터 : ㈜ M.I.Tech(MTS-A410SE)

5-1) C#예제 전체소스 코드

본 예제의 회로도에서 PWM 1은 DC모터 / 냉온소자, PWM 2는 Servo 모터로 연결되어 있습니다. 여기서 설명하는 PWM 1은 DC모터이며 냉온소자, Servo 모터에 관한 설명은 Application Notes의 Smart I/O_PWM 예제 소스를 참고 바랍니다.

[STEP-1] 변수선언 및 초기화
public partial class Form1 : Form
// IEC687 . 성전가는하 조파스 배역
private string[] m_Frequence = { TK, ZK, 5K, T0K, Z0K, 50K, T00K, Z00K, 500K, TM, ZM, 8M,
"11M", "16M"};
// PWM1 & 2의 프리스케일러의 값을 처리하는 변수선언 및 초기화
private byte Prescaler = 240;
// PWM1 & 2의 DeadTime 값을 처리하는 변수선언 및 초기화
private byte DeadTime = 0:
// DW/M1이 드티비 DW/MCounter CleakDiviert Polarity 성정 변수성이 만 초기하
// 1 에에너희 ㅠ디네, 1 에에스에너희, 이어스러이에너, 1 이에너빗 물장 근무전된 옷 도가와
private double PWMI DutyRate = 0,
private uint PWM1Counter = 200;
private SmartX.SmartPWM.CLOCKDIVIDER PWM1ClockDivide = SmartX.SmartPWM.CLOCKDIVIDER.DIVIDE2;
private SmartX.SmartPWM.POLARITY PWM1Polarity = SmartX.SmartPWM.POLARITY.HIGHACTIVE;
중략
1

[STEP-2] Form1_Load함수에서 SmartPWM 초기값 설정

// 폼 로드시 실행 됨 private void Form1_Load(object sender, EventArgs e) { // PWM1, PWM2 초기 프리스케일러 설정 smartPWM1.PreScaler = Prescaler; // PWM1, PWM2 초기 디바이더 설정

smartPWM1.ClockDivider1 = PWM1ClockDivide; smartPWM1.ClockDivider2 = PWM2ClockDivide;

// PWM출력 비반전 처리 smartPWM1.Polarity1 = PWM1Polarity; smartPWM1.Polarity2 = PWM2Polarity;

// PWM1, PWM2 Counter 초기 값 설정 smartPWM1.PWMCounter1 = PWM1Counter; smartPWM1.PWMCounter2 = PWM2Counter;

// PWM1, PWM2 듀디비 초기 값 표시 및 설정 LblPwm1Duty.Text = PWM1DutyRate.ToString(); smartPWM1.DutyRate1 = PWM1DutyRate; smartPWM1.DutyRate2 = PWM2DutyRate;

```
// PWM1 & PWM2 DeadTime 초기 값 표시 및 설정
smartPWM1.DeadTime = DeadTime;
…중략…
```

}

```
[STEP-3]
            PWM1의 PWM출력을 시작 / 정지
  private void BtnPwm1Ctrl_Click(object sender, EventArgs e)
  {
      // PWM1 Start
      if (BtnPwm1Ctrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.DOWN)
      {
         smartPWM1.StartPWM1();
      }
      // PWM1 Stop
      else if (BtnPwm1Ctrl.ButtonStatus == SmartX.SmartButton.BUTSTATUS.UP)
      {
         smartPWM1.StopPWM1();
         // Pwm1 DutyRate Value 0
         PWM1DutyRate = 0;
         // PWM1의 듀티비 적용
         smartPWM1.DutyRate1 = PWM1DutyRate;
         //레이블에 현재 듀티비 값 표시
         LbIPwm1Duty.Text = "0";
         Pwm1DutyCheck();
         BtnPwm1Lv1.ButtonUp();
         BtnPwm1Lv2.ButtonUp();
         BtnPwm1Lv3.ButtonUp();
         BtnPwm1Lv4.ButtonUp();
         BtnPwm1Lv5.ButtonUp();
      }
  }
```

[STEP-4] PWM의 DutyRate 조정(증가 경우)

```
// PWM1의 DutyRate를 +1 씩 증가

private void BtnPwm1DutyUp_Click(object sender, EventArgs e)

{

    // 100이상 증가 안됨

    if (PWM1DutyRate < 100)

    {

        // m_dPWM1DutyRate 값 1씩 증가

        PWM1DutyRate++;

        //레이블에 현재 듀티비 값 표시

        LblPwm1Duty.Text = PWM1DutyRate.ToString();

    }

    // PWM1의 듀티비 적용

    smartPWM1.DutyRate1 = PWM1DutyRate:

    Pwm1DutyCheck(); // DutyRate1에 따른 처리 코드로 개발자가 직접 작성

}
```


5-2) VB.NET 예제 전체소스 코드

본 예제의 회로도에서 PWM 1은 DC모터 / 냉온소자, PWM 2는 Servo 모터로 연결되어 있습니다. 여기서 설명하는 PWM 1은 DC모터이며 냉온소자, Servo 모터에 관한 설명은 Application Notes의 Smart I/O_PWM 예제 소스를 참고 바랍니다.

[STEP-1] 변수선언 및 초기화

Public Class Form1 ' IEC667 설정 가능한 주파수 배열 Dim m_Frequence() As String = {"1K", "2K", "5K", "10K", "20K", "50K", "100K", "200K", "500K", "1M", "2M", "8M", "11M", "16M"} ' PWM1 & 2의 프리스케일러의 값을 처리하는 변수선언 및 초기화 Dim Prescaler As Byte = 240 ' PWM1 & 2의 DeadTime 값을 처리하는 변수선언 및 초기화 Dim DeadTime As Byte = 0 ' PWM1의듀티비, PWMCounter, ClockDiviert, Polarity 설정 변수선언 및 초기화 Dim PWM1DutyRate As Double = 0 Dim PWM1Counter As Integer = 200 Dim PWM1ClockDivide As SmartX.SmartPWM.CLOCKDIVIDER = SmartX.SmartPWM.CLOCKDIVIDER.DIVIDE2 Dim PWM1Polarity As SmartX.SmartPWM.POLARITY = SmartX.SmartPWM.POLARITY.HIGHACTIVE ...중략... End Class

[STEP-2] Form1_Load함수에서 SmartPWM 초기값 설정

'폼로드시 실행 됨

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load ' PWM1, PWM2 초기 프리스케일러 설정 smartPWM1.PreScaler = Prescaler

'PWM1,PWM2 초기 디바이더 설정

smartPWM1.ClockDivider1 = PWM1ClockDivide
smartPWM1.ClockDivider2 = PWM2ClockDivide

'PWM출력 비반전처리

smartPWM1.Polarity1 = PWM1Polarity smartPWM1.Polarity2 = PWM2Polarity

```
' PWM1, PWM2 Counter 초기 값 설정
smartPWM1.PWMCounter1 = PWM1Counter
smartPWM1.PWMCounter2 = PWM2Counter
```

'PWM1, PWM2 듀디비초기 값 표시 및 설정

LbIPwm1Duty.Text = PWM1DutyRate.ToString() smartPWM1.DutyRate1 = PWM1DutyRate smartPWM1.DutyRate2 = PWM2DutyRate

```
' PWM1 & PWM2 DeadTime 초기 값 표시 및 설정
smartPWM1.DeadTime = DeadTim
...중략...
End Sub
```


Private Sub BtnPolarity_Click(ByVal sender As System.Object, ByVal e As System.Event/	Args) Handles BtnPolarity.Click
If BtnPolarity.ButtonStatus = SmartX.SmartButton.BUTSTATUS.DOWN Then	
smartPWM1.Polarity2 = SmartX.SmartPWM.POLARITY.HIGHACTIVE	' PWM출력비반전처리
Elself BtnPolarity.ButtonStatus = SmartX.SmartButton.BUTSTATUS.UP Then	
smartPWM1.Polarity2 = SmartX.SmartPWM.POLARITY.LOWACTIVE	'PWM출력반전처리
End If	
End Sub	

5-3) C++ 예제 전체소스 코드

CPP 예제 소스 코드는 별도로 제공하지 않습니다. SmartX Framework 관련 예제를 참고하시기 바랍니다.

자료위치 안내 : 자사홈페이지(www.hnsts.co.kr) → 자료실 → SmartX 관련자료 → SmartX Framework 예제파일 → SmartX_Example_C++ → SmartPWMEVC

[주의] Pwm1의 캐리어 주파수를 지정해서 사용하실 경우에는 PreScaler는 Pwm1/2 공통으로 적용되는 부분이라 Pwm 1/2 를 동시에 사용 불가합니다.

[MEMO]

홈페이지 : www.hnsts.co.kr / 쇼핑몰(제품구매) : www.hnsstore.co.kr

부서안내	연락처	직통 전화	이메일
제품 구매 및 견적문의	02-6402-8001(내선 1번)	070-7094-5770	sales@hnsts.co.kr
하드웨어 기술문의	02-6402-8001(내선 2번)	070-7094-5001	hns@hnsts.co.kr
소프트웨어 기술문의	02-6402-8001(내선 3번)	070-7094-5002	app@smartx.co.kr
제품서비스 기술문의	02-6402-8001(내선 4번)	070-7094-5003	tech@smartx.co.kr

대표전화:02-6402-8001/팩스:02-6442-9775

서울특별시 금천구 가산디지털1로 181, 1505호(가산 W CENTER)

㈜에이치앤에스

본 내용의 저작권은 (주)에이치앤에스가 가지고 있습니다. 제품 및 자세한 문의사항은 아래의 연락처로 연락 및 메일 문의 주시기 바랍니다. 감사합니다.

